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Abstract—The traveling salesman problem is one of the most widely studied problems in the
field of combinatorial optimization. However, the investigation of new approaches and the
improvement of existing methods remain a significant area of research. This paper presents
an analysis of the quality of the cycle merging algorithm used to solve the minimum traveling
salesman problem. The results of a computational experiment on five families of problems are
provided, and the accuracy and time complexity of the algorithm are analysed. For symmetric
instances, a regression model is constructed to describe the dependence of the relative error
estimate on the number of vertices. It is shown that a polynomial model provides the best
approximation of the obtained data and satisfies key statistical assumptions. The results allow
us to evaluate the error growth patterns and to justify the applicability of algorithms to large-
scale instances of the traveling salesman problem.
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1. INTRODUCTION

The traveling salesman problem is a classical combinatorial optimization problem and remains
one of the most important and topical problems in the field of applied mathematics and computer
science. Its importance is manifested in many practical spheres, such as logistics, transportation,
production, route planning and others. The minimum traveling salesman problem consists in
finding the Hamiltonian cycle with minimum sum of weights of edges in a complete graph.

In recent decades, a variety of methods for solving the traveling salesman problem has been
widely studied. These include exact algorithms, approximations, and heuristic techniques [1, 2].
However, with the advent of new computational technologies and the constant increase in the
amount of data, there is a need to develop more efficient and scalable algorithms to solve this
problem.

The traveling salesman problem is NP-hard [3]. Therefore, the development of polynomial
approximate algorithms is relevant for its solution.

This paper presents an empirical study and statistical analysis of the accuracy and time com-
plexity of a heuristic algorithm for solving the traveling salesman problem — the cycle merging
algorithm. Section 2 characterizes the accuracy and running time estimates of popular efficient
algorithms for solving the minimum traveling salesman problem. Section 3 gives a brief description
of the algorithm under study. Section 4 describes the problem generation and the computational
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experiment. The results of the computational experiment on random input data are presented in
Section 5: data on the accuracy and solution time of the problems are given. Section 6 provides a
statistical analysis of the accuracy of the cycle merging algorithm. Section 7 summarizes the main
conclusions of the experimental results.

2. STATE OF THE PROBLEM OVERVIEW

Heuristic and approximate algorithms such as nearest neighbor algorithm, greedy algorithm,
nearest insertion and others are widely used in practice due to their simplicity and efficiency. They
often show good results for small datasets, but may not provide the optimal solution for high
dimensional problems.

Table 1 presents priori estimates of the accuracy and time of some heuristic algorithms [4] for
the minimum traveling salesman problem. The upper bounds for the algorithms are calculated as
the ratio f(s)/f(so), where f(s) is the obtained tour length and f(sp) is the optimal tour length.

Table 1. Upper bound of accuracy estimation and running time of the algorithms

Algorithm Upper bound Operation time

Immediate neighbor [5]
Immediate double-ended neighbor [6] 0.5 [logy N + 1]
Greedy [5] O(N?)log N
Nearest addition [6]
Nearest insert [6, 7]
Cheapest insert [6, 7] O(N?)log N
Farthest insert [6, 7]

Arbitrary insertion [7]

O(N?)

O(N?)

2-2/N

Inserting the nearest segment O(N?)

Dual minimal spatial tree [8]

Dual minimal spatial tree modified
Christofides [9] 3/2—1/N O(N?3)

Mura curve [10]

log N O(Nlog N)

Serpinsky curve [11]
2-Opt [12] ~ 2 O(N?)

The above algorithms for solving the traveling salesman problem have different advantages and
disadvantages depending on the characteristics of the input data and the required accuracy of the
result.

The following sections will analyze the accuracy and time complexity of the cycle merging
algorithm.

3. THE CYCLE MERGING ALGORITHM FOR SOLVING
THE TRAVELING SALESMAN PROBLEM

The authors of the study [13] investigated a heuristic algorithm for solving the traveling salesman
problem — Cycle Merging Algorithm (CMA). Here is a brief description of the algorithm.

The first step of the algorithm consists of finding an extreme weight in a given graph of a 2-regular
subgraph, i.e. covering this graph with cycles. This construction is commonly referred to as
a 2-factor of minimum weight. The problem of finding a 2-factor of minimum weight can be
reduced to an assignment problem for which exact polynomial algorithms are known.
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Fig. 1. Cycle merging options.

In the second phase, the condition of cycle singularity of the obtained solution is checked. If
the 2-factor is represented by a single cycle, then this cycle is the solution of the problem. If the
2-factor is represented by several cycles, then different cycles r and ¢ are searched in pairs. In each
cycle of the selected pair, one edge is searched.

Let e’{T@t} = [vl,v2] and ef{T@t} = [ul, u2] be chosen, for them two pairs of conjugate edges are
found (f = [vl,ul], g = [v2,u2]) and (f = [v],u2], g = [v2,ul]), used to connect the cycles (Fig. 1).
We search for a set r,t, e’{”r@t}, et{r@t}, f, g of the listed elements such that the connected cycle has
minimum weight.

The found pair of cycles is then replaced by the joined cycle with minimum cost. The algorithm
terminates when the current 2-factor contains only one cycle.

A theorem on the computational complexity of the algorithm is formulated and proved for the
described algorithm.

Theorem 1. The computational complexity of the cycle merging algorithm does not exceed
O([V]?).

A more detailed description of the cycle merging algorithm and a proof of the computational
complexity theorem are given in [13].

For the metric maximal traveling salesman problem, a theoretical accuracy bound was previously
established for this algorithm [13], which allows us to rigorously evaluate its quality in this class
of problems. However, there are no such theoretical bounds for the minimum traveling salesman
problem, so it is of interest to conduct an empirical study of the accuracy of the algorithm.

4. DESCRIPTION OF TEST PROBLEMS

To evaluate the quality of the cycle merging algorithm for the traveling salesman problem at min-
imum, a computational experiment was conducted on problem sets from the TSPLIB library [14],
as well as on randomly generated instances with different characteristics of the cost matrix.

The performance of the algorithm was evaluated on the following families of the traveling sales-
man problem:

1. Asymmetric instances of the traveling salesman problem from TSPLIB. TSPLIB contains real
and artificially generated problems that are widely used in heuristic and exact algorithms. The
asymmetric cost of traveling between vertices makes the solution more complex, since the inherent
symmetry inherent in many classical methods is broken.

2. Euclidean instances of the traveling salesman problem from TSPLIB (n < 3000). This data
type models geometric versions of the problem, where vertices correspond to points in the plane and
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the costs of transitions between them are determined by the Fuclidean distance. Such problems
are commonly found in logistics, navigation, and network planning.

3. Asymmetric cost matrices W = [w(4, j)], where w(i, j) are random numbers from {0,1,2, ...,
10°}. The uniform distribution of values in a fixed interval models random systems with indepen-
dent transition weights. This allows to test the algorithm under full uncertainty of the structure
value.

4. Asymmetric cost matrices where w(i, j) are random numbers from {0,1,2,...,7 x j}. In this
family, the range of possible costs increases as the vertex indices increase, which models problems
where the communication between vertices becomes more expensive or complex as their numbers
increase. This type of matrix allows to analyze the behavior of the algorithm on problems with
non-uniform complexity of links.

5. Symmetric cost matrices W where w(i, j) are random numbers from {0, 1,2,...,10%} fori < j.
In contrast to the asymmetric cases, the symmetric structure limits the set of possible solutions,
but leads to an increase in the number of short cycles in the original coverage. This makes it
difficult to combine cycles into a single route and can negatively affect the accuracy of the heuristic
algorithm.

6. Symmetric matrices where w(i, j) are random numbers from {0, 1,2,...,i x j} fori < j. Sim-
ilar to the asymmetric case, but taking into account the symmetry of the weights. This type of
problem models cases where distant vertices are associated with higher cost of transitions. How-
ever, the presence of many short cycles in the early stages of the solution makes the problem
computationally complex, and may worsen the accuracy of an approximate solution.

7. Sloped plane instances of the problem where the arc weight is defined as

w(i,j) = \/(xz' —x;)* + (yi — ;)% — max(0,y; — y;) + 2max(0,y; — vi),

with vertex coordinates generated independently and uniformly on the interval {0,1,2,...,10°}.
This model simulates a situation in which moving vertically involves additional costs, such as
traveling on mountain roads. The difference in the cost of upward and downward movement makes
the problem asymmetric and complicates its solution.

For families 3-6, the number of vertices n was varied from 100 to 3000 by increments of 100.
All results are the average of 100 trials each.

The experiment uses instances that are generated in both a random and determined way. The
number and variety of families used allows us to check the reliability of the algorithm under test.

5. RESULTS OF COMPUTATIONAL EXPERIMENT FOR THE TRAVELING
SALESMAN PROBLEM AT MINIMUM

For the first and the second family of problem instances (asymmetric and euclidean problems
from TSPLIB), the results are given in [15]. The analysis of accuracy and computational efficiency
of the cycle merging algorithm for the other families are considered within the framework of this

paper.

5.1. Analysis of Relative Error Estimation

Figure 2 shows the relative error estimates obtained in the course of the numerical experiment
for different families of traveling salesman problems. The elements of the cost matrix of these
problems were randomly generated according to the generation rules described in Section 4.
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Fig. 2. Relative error estimation of the cycle merging algorithm for different families
of the traveling salesman problem.

The analysis of the results shows differences in the behavior of the relative error estimation
depending on the family of the considered instances.

For asymmetric instances of the traveling salesman problem with uniformly distributed elements
of the weight matrix from the set {0,1,2,...,105} (family 3) relative error decreases with increasing
number of vertices. At n = 100 its average value is 9.15%, and at n = 3000 it decreases to 1.97%.
Analogous tendency is observed for family 4, but the error value in average remains lower, decreasing
from 5.12% at n = 100 to 1.06% at n = 3000.

For symmetric instances of the traveling salesman problem, represented by families 5 and 6, a
different behavior is observed. The relative error in both cases increases with increasing number
of vertices. Thus, for family 5 it increases from 103% at n = 100 to 541% at n = 3000. A similar
increase is characteristic for the family 6, with the error increasing from 65 to 175% for the same
values of n.

For the sloped plane instances (family 7), the estimate of the relative error remains relatively
stable over the entire interval of n values, fluctuating between 36.6-37.7%. This result indicates
that the accuracy of the algorithm is less dependent on the dimensionality of the problem in this
family of instances.

Thus, the analysis shows that:

e for asymmetric instances of the traveling salesman problem, the estimate of the relative error
decreases with increasing number of vertices;

e for symmetric instances of the traveling salesman problem, the opposite trend is observed —
the error increases with increasing problem dimensionality;

e the family of sloped plane demonstrates stable values of the relative error, insignificantly
changing with increasing number of vertices.

5.2. Analyzing the Solution Time

Figure 3 presents the average running time of the cycle merging algorithm at solving one problem
for different families of instances of the traveling salesman problem.

The analysis of time characteristics shows different behavior of time growth of the solution
depending on the family of considered instances.
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Fig. 3. Solution time per instance of the traveling salesman problem using the
cycle merging algorithm for various problem families.

For asymmetric instances of the traveling salesman problem with uniformly distributed elements

of the weight matrix from the set {0,1,2,...,10°} (family 3) solution time increases from 0.105 s
at n =100 to 259.88 s at n = 3000. For family 4 (W = [w(i,7)], where w(i,j) are uniformly
distributed random numbers of {0,1,2,...,i X j}) the solution time grows faster, starting from

0.14 s at n = 100 and reaching 3057.04 s at n = 3000. This indicates the significant influence of
structure of the cost matrix on the computational complexity of the algorithm.

For symmetric instances of the traveling salesman problem, a faster growth of the solution time
is observed. In particular, for family 5 (W = [w(i,j)], where w(i,j) are uniformly distributed
random numbers from {0,1,2,...,10°}) it increases from 0.114 s when n = 100 to 5760.3 s when
n = 3000. For family 6 (W = [w(i, )], where w(i,j) are uniformly distributed random numbers
from {0,1,2,...,i x j}) this growth of is even more pronounced: from 0.27 s to 16669.63 s over
the same interval of n values. Thus, the specificity of the structure of weights influences not only
the accuracy, but also the computational complexity of the algorithm.

For the instances of sloped plane (family 7), a significant increase in the solution time is also
observed. At n = 100 the average time is 0.279 s, and at n = 3000 it reaches 16 694.93 s, which is
similar to the indicators for the sixth family of problems and significantly exceeds the data for all
other families of problems. This indicates the complexity of processing such instances by the cycle
merging algorithm.

In general, the analysis of temporal characteristics shows that:

o asymmetric instances of the traveling salesman problem are solved faster than symmetric
ones, but the structure of the cost matrix significantly affects the growth of solution time;

o for symmetric instances there is an accelerated growth of the running time of the algorithm,
especially for family 6;

« instances of sloped plane show the highest values of the solution time, which may be related
to the peculiarities of the geometric structure of the problems.

The complexity of the symmetric non-Euclidean traveling salesman problem for algorithms start-
ing from the assignment problem is due to the low accuracy of the lower bound obtained using this
method. In particular, for the vast majority of symmetric instances, the assignment problem leads
to a cycle coverage containing a large number of short cycles (Table 2). This significantly compli-
cates the process of combining them into a single route, increasing both the computational cost
and the resulting relative error.
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Table 2. Ratio of the number of initial cycles to the number of problem vertices

Number of vertices Asymmetrical instances Symmetrical instances
100 0.0382 0.4920
200 0.0225 0.4768
300 0.0162 0.4771
400 0.0139 0.4892
500 0.0118 0.4848
600 0.0101 0.4867
700 0.0086 0.4896
800 0.0076 0.4902
900 0.0071 0.4890
1000 0.0070 0.4878

As can be seen from the table, for asymmetric instances the ratio of the number of initial
cycles to the number of vertices decreases significantly with increasing dimensionality of problem,
decreasing from 0.0382 (100 vertices) to 0.0070 (1000 vertices). This indicates a tendency to form
longer cycles, which contributes to a more efficient connection of routes at subsequent stages of the
algorithm.

In contrast, for symmetric instances this ratio remains practically unchanged, fluctuating in the
range 0.4768-0.4920. This indicates that during the formation of the 2-factor for this family of
problems, a lot of short subcycles are formed, which makes it difficult to combine them into the
final route.

The growth of the solution time for symmetric instances is explained by the fact that the process
of connecting a large number of short cycles requires a significantly larger number of iterations,
which leads to a complication of the algorithm structure and an increase of its computational com-
plexity. As shown in Fig. 3, the running time of the algorithm for connecting cycles for symmetric
instances significantly exceeds the similar values for asymmetric problems.

Thus, in order to improve the accuracy and reduce the time to solve the symmetric non-Euclidean
traveling salesman problem, further study of specialized heuristics and approximate algorithms
adapted to work with this family of problems is required.

6. STATISTICAL ANALYSIS OF THE ACCURACY OF THE CYCLE MERGING
ALGORITHM FOR SYMMETRIC TRAVELING SALESMAN PROBLEM

As part of the investigation of the accuracy of the cycle merging algorithm for the symmetric
traveling salesman problem at minimum, a statistical analysis of empirical data obtained for in-
stances of the problem with a weight matrix whose elements are generated uniformly from the set
{0,1,2,...,7 x j} (the fifth family of problem instances from Section 4) was carried. Since there
are no theoretical bounds on the accuracy of the algorithm for the symmetric minimum comparison
problem, we used regression analysis methods to predict the dependence of the relative error on
the number of vertices.

Three possible regression models were considered: steppe, second-order polynomial, and loga-
rithmic. These models were chosen on the basis of observations on the nature of the relative error
growth with increasing number of vertices.
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6.1. Selection of Regression Model

Exploratory analysis is a necessary step to test the assumptions [16] associated with regression
models and to select the most appropriate model to approximate the data. As part of this analysis
phase, visual inspections were performed and statistical characteristics were calculated for each
model to compare their performance and accuracy.

Visual methods such as scatter dot plot and dot plot matrix were used to analyze the relationship
between the number of vertices and relative error. Histograms and tests for normality of the
distribution of residuals were also used. Statistical tests, such as the coefficient of determination R?,
adjusted R?, and the Durbin-Watson and Breusch-Pagan tests, were used to assess the model’s fit
to the statistical assumptions.

6.1.1. Power regression. The power model is of the form

y = ax®. (1)
After logarithmization, the equation takes a linear form:
logy =loga+b-logx. (2)

The following results were obtained for this model:

e The coefficient of determination R? = 0.9676, adjusted R? = 0.9665, which indicates high qual-
ity of data approximation.

e The significance of the model coefficients is confirmed by the p-values, which are less than
210716,

e The Durbin—-Watson test showed no significant autocorrelation of the residuals (DW = 1.9527,
p=0.3711).

e The Breusch-Pagan test revealed the presence of heteroscedasticity (p = 1.24 - 1079), indicat-
ing instability in the variance of the residuals.

e The global test for compliance with the linear regression assumptions showed violation of the
assumptions (p = 2.81-1077).

Thus, although the power model has a high coefficient of determination and provides a good

approximation, the identified problems with heteroscedasticity and violation of linear assumptions
indicate its limitations.

6.1.2. Polynomial regression. The second-order polynomial model is

logy =a+b-logz+c-log? . (3)

The statistical characteristics of this model are:

R? =0.9999, adjusted R? = 0.9999, which confirms the almost perfect fit of the model data.
All model coefficients are statistically significant (p < 0.001).

e The Durbin—Watson test showed no autocorrelation (DW = 2.2082, p = 0.5771).

e The Breusch-Pagan test showed no heteroscedasticity (p = 0.1035).

The global test showed small deviations from the assumptions (p = 0.002).

The second-order polynomial model showed a significantly better fit to the data compared to
the power model, eliminating heteroskedasticity problems. However, the test for global fit to the
linearity assumptions indicates possible deviations, which nevertheless do not have a significant
impact on the accuracy of the model.
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Fig. 4. Comparison of regression models for symmetric instances from the set {0,1,2,...,10°}.

6.1.3. Logarithmic regression. The logarithmic model is described by equation

y=a+b-Inz. (4)

Statistical results:

e R? is slightly lower than that of the polynomial model, but remains high.

e The residuals meet the requirements of normality and homoscedasticity.

e The global test confirms satisfactory compliance with the prerequisites.

The logarithmic model, as well as the polynomial model, showed good correspondence with the
data and regression assumptions with easily interpretable coefficients.

6.1.4. Model selection. Figure 4 shows plots of empirical and model values for different personal
regression models.

The analysis showed that the power model has a high coefficient of determination, but violates
the regression assumptions. The second-order polynomial model significantly improves the quality
of approximation by eliminating heteroscedasticity. The third-order polynomial model improves
the quality of predictions, but may lead to overcomplication. The logarithmic model describes the
slowing growth well, but has limitations in extrapolation.

According to the test results and interpretation of the data, the second-order polynomial model
and logarithmic regression are the most fitting. The polynomial model provided the best fit to the
data, eliminating the major problems of power regression. The logarithmic model describes slowing
growth well, but when extrapolated to values beyond the training set, it can produce bias because
the logarithmic relationship assumes infinite growth at large x, which does not always fit real data.
In the further analysis we will use the polynomial model of the second order as the most accurate
and satisfying the key statistical requirements (Table 3).

Table 3. Global verification of polynomial regression assumptions

Test Value p-value

Global Stat 16.843 0.0021 (not satisfied)
Skewness 3.189 0.0742 (acceptable)
Kurtosis 2.321 0.1277 (acceptable)
Link Function 9.898 0.0017 (not satisfied)
Heteroskedasticity 1.436 0.2308 (acceptable)
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The polynomial model on a logarithmic scale shows a good fit to the data, but small deviations
from linearity may indicate its limitations in extrapolation. In general, the results support their
applicability, although a possible bias should be considered when forecasting large values.

0.2. Evaluation and Interpretation of the Model

The constructed polynomial regression model describes the dependence of the average relative
error on the number of vertices. The inclusion of a quadratic term made it possible to take into
account the nonlinear nature of the error growth. The coefficient b; = 0.4465 at logn indicates an
accelerating growth of the error with increasing dimensionality of the problem, and the positive
value by = 0.0035 at (logn)? confirms a small acceleration of growth at small values of n. However,
this effect is smoothed out at large problem dimensions, which indicates a tendency to stabilization
of error.

Key statistical measures of the model:

e R? =0.9999 (almost complete explanation of variance).
o F-statistic: 129100 (p < 2-107'6), which confirms the significance of the model and high
degree of fit to the data.

e Confidence intervals show that all model coefficients are statistically significant (p < 0.01).

Figure 5 presents a graphical comparison of empirical data and predicted values of the model.

Analysis of the global regression assumption test showed a violation of the link function (p =
0.0017). However, the absence of heteroscedasticity and autocorrelation of residuals allows us to
consider the polynomial model suitable for describing the relationship, despite small deviations
from the assumptions of linearity.

6.3. Prediction for Problems of High Dimensionality

On the basis of the constructed polynomial model, we extrapolated to predict the relative error
for problems of up to 10000 vertices (Fig. 6). The results show that at large n the tendency to
the error growth remains, but the effect of acceleration due to the quadratic term becomes less
pronounced. This confirms that the relative error tends to stabilize and its increase slows down.

Statistical analysis demonstrates that the proposed polynomial model describes well the depen-
dence of the relative error on the dimensionality of the problem and allows us to make predictions
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for large n. Although the model retains high approximation accuracy, possible deviations in extrap-
olation indicate the need for further investigation of error behavior for problems of extremely large
dimensions. Nevertheless, the obtained results confirm that the cycle merging algorithm demon-
strates a stable character of change of error and can be applied to the solution of the symmetric
salesman problem in the case of high dimensionality.

7. CONCLUSION

The article presents the results of an empirical study of the accuracy and time complexity of
the cycle merging algorithm, as well as a statistical analysis of the accuracy of the algorithm for
one of the considered families of the symmetric traveling salesman problem on the minimum.

The empirical analysis was performed on seven families of problems, of which the article presents
results for five families of randomly generated instances.

The study shows that the solution quality and computational complexity of the algorithm depend
on the structure of the cost matrix. For asymmetric instances the relative error estimate decreases
to 1-2% at 3000 vertices, whereas for symmetric instances and sloped plane instances there is a
gradual increase in relative error. The solution time for all families increases polynomially, with
the solution time for symmetric and sloped plane instances being significantly higher than for the
asymmetric instances.

The analysis shows that the relative error of the cycle merging algorithm for the symmetric
traveling salesman problem demonstrates polynomial growth with increasing dimensionality of the
problem. This is confirmed by statistical processing of experimental data, where the polynomial
regression model provides the best fit to empirical observations.

In spite of the error growth, the proposed algorithm retains acceptable accuracy and polynomial
running time, which makes it a promising tool for solving instances of the traveling salesman
problem of large dimensionality. To further improve the quality of solutions, it is advisable to
investigate hybrid approaches combining cycle merging algorithm with additional heuristics and
local improvements.
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